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Preface

The work described in this report was performed by the Engineering Mechanics
Division of the Jet Propulsion Laboratory.

JPL TECHNICAL MEMORANDUM 33-411






PRICEDING PAGE BLANK NOT PLMED.

Contents

L. Introduction . .
. The System
. The Problem of Component Resonance
IV. Alternative Form for Total System Rec-piances
V. A Means of Avoiding the Component Resonance Problem .
VIi. Summary and Conclusions .

Nomenclature .

Figure

1. Typical coupling link

JPL TECHNICAL MEMORANDUM 33-411



vi

Abstract

The receptance matrix of a coupled system is derived in terms of the receptance
properties of the individual component systems and coupling links. It is then shown
that the resulting matrix equation may give quite inaccurate results near a reso-
nance frequency of an individual component system where the receptance matrices
for that component have large, nearly parallel columns. A formulation of the prob-
lem is given in terms of matrices with the large, parallel parts of the columns
removed, thus avoiding the inaccuracy difficulty with very little additional com-
putation. The formulation is valid for systems with damping, since all receptance
terms are treated as complex numbers.
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Receptance Coupling of Structural Components

Near a Component Resonance Frequency

|. Introduction

The general method of characterizing the dynamic
properties of linear systems by frequency-dependent ratios
between inputs and outputs is now well known. The ratio
factors are commonly put in matrix form and are variously
called impedances, admittances or mobilities, receptances,
four-pole parameters, transmission matrices, etc., depend-
ing on the particular type of ratio chosen.

If the dynamic properties of individual components of
a complex system are known, then only matrix algebra is
needed to determine the dynamic properties of the com-
plex system. Although the matrix coupling operation is
ar.lytically straightforward, certain computational diffi-
culties may arise in practice. In particular, each com-
ponent system may have some resonancs frequencies near
which all ratios of response to excitation will become very
large (or inverse ratios will becom: very small). In gen-
eral, the resonance frequencies of the entire coupled
system will not coincide with those of the individual
components. Thus one may of'en find that “normal-size”
dynamic characteristics (reflecting no resonance) must be
computed by taking differerces between very large terms
that reflect an individual component system resonance.
This report presents & formulation for greatly improving
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computational accuracy near a component-system reso-
nance frequency. The receptance formulation of dynamic
characteristics® is used.

Il. The System

The total system considered in this study is made up of
N component systems coupled together by n coupling
links. The coupling links are considered to have flexibility
and damping, but o mass. The Jth component system
(1=1 to N) has n/ pcints to which coupling links are
attacned, n) points at which exciting forces are applied,
and n’ points at which the displacement response is to be
determined. These points will hereinafter be referred to as
the coupling points (numbered from 1 to n!), excitation
points (1 to n!), and the response points (1 to n;) of com-
ponent J. Each coupling link is attached to two coupling
points (in two different components), so that n is related
to the n! values:

=5y )

'E. Heer, “Coupled Systems Subjected to Determinate and Random

nput,” Int. ], Solids Structures, Vol. 3, pp. 155-166, 1967,



One assumes that certain matrices of receptance values
for the component systems are known. In particular,
assume that one knows the receptances necessary to write
the column matrix of displacements at the response points
in component J (J =1 to N) as

(X'} = (@) (P} + [+ 0’1 (M) (@)
and the column matrix of coupling-point displacements as
(D'} = (@] (P} + (] (M) 3)
where {P’} is the column matrix of forces applied to the
excitation points of component J and {M’} is the column

matrix of forces applied to the coupling points of com-
ponent J.

Equations (2) and (3) can also be expanded to describe
the total system as

(X} = (D) (P} + [+D) (M) (4)
and

(D} = [B) (P} + (D) (M) (5)

where the four column matrices can be partitioned as
illustrated for {X}:

(X}=4" (6)

and the partitioning of the four rectangular receptance
matrices is illustrated by [(D]:

@l 0 . 0
0 2 0
o 0o - O

The elements of the rectangular receptance matrices in
Eqgs. (2) and (3) are, in general, complex and frequency-
dependent. The elements of the column matrices can be
either steady-state harmonic functions written as complex
constants times ¢'“* or as Fourier transforms of the time
histories of the specified forces and displacen.ents.

For the total system one seeks a rectangular (n, X n,)
receptance matrix [f] that satisfies

{X} = [H]{P} 8)
Note that
fhy = ;‘.‘. n, ©)
and .
n,: bz} n (10)

To obtain the matrix [H] one must know the location
and properties of the coupling links in addition to the
component receptance matrices of Egs. (2) and (3). To
specify the location of coupling links, let [C] be an
(n X 2n) rectangular matrix that can be partitioned as

[C]:[CIECEE...ECN] (11)

where the [C’] submatrix is (n X n?). If coupling link !
is attached to coupling point i in component I and coupling
point j in component J, then either let

Ci, = +1 ard ci=-1 (12)

or let

Cl,=-1 and Ci,=+1 (13)
Let all other elements of row 1 of [C] be zero. Then row
Lot |C] {D} is the relative displacement of the two ends
of coupling link I. Let M; be the force in coupling link 1.
(Since the link is massless, this force is the same at both
ends of the link.) Since the system is linear, one can then
write

[C1{D} = ["KJ (M)} (14)

where [NK.] is a diagonal matrix of complex frequency-
dependent terms.

The column matrix of coupling-point forces {M}_is
related to the column matrix of coupling-link forces {M}
by the transpose of the [C] matrix

{M} = [C]" (M) (13)
The preceding equations are easily confirmed by analyz-

ing Fig. 1 in which the extension of coupling link ! is gov-
erned by

Dj - D = Ku (+M)) (16)
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Fig. 1. Typical coupling link

Equating forces at each coupling point gives

~Mi =M= =M, (17)
Using the plus sign for M, in Egs. (16) and (17) confirms
Egs. (14) and (15) with the row [ elements of [C] given
by Eq. (13). Using the minur sign for M, also confirms

Eqgs. (14) and (15), but this time with the [C] elements
given by Eq. (12). Thus Egs. (12) and (13) are equivalent.

Combining Egs. (5), (14), and (15) gives

[A] (M} = [C][Z](P) (18)
where

[4] = K] - [€] (3] [C) (19)

Letting [A-'] denote the inverse of [A], one ¢. 1 then use
Eq. (15) to substitute {M} from Eq. (18) into Zq. (4) to
obtain

Xy =1Q] + [-@1CI" (4} [C) [T (P} (20)

Comparison of Eq. (20) with Eq. (8) shows that the desired
[H] matrix is given by

[H] = [Q] + [+Q)iC])T [A][C) [D) (21)

Because of the sparse nature of the receptance matrices
illustrated by Eq. (7), one can partition [H] in the obvious
manner and obtain

[HY] = [@7] + [« @1 (€T [A] 1€ [TY) (22)

where
(@] ==[0] forI =] {23)
and

(@] =1[T"] (24)
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lil. The Problem of Component Resonc:nce

Note that in matrix [A] the i, j component of the matrix
[C1[Z][C]" is the ratio between the relative displace-
ment of the two attachmem points of coupling link i
and the force in coupling link ,(M;), when all exciting
forces are zero and all coupling forces except M; are zero.
For i 5, this relative displacement is an incompatibility
of this single-force arrangement. For i = j, part of the
relative displacement may be accommodated by the re-
ceptance of coupling link {, and the remainder is 2n incom-
patibility. Thus wi‘h [A] defined by Eq. (19), the element
A,, is a measure of the incompatibility across coupling
link { due to a force in coupling link j. The total column j
of TA] gives the incompatibilities across all the coupling
links due to a force in coupling link 7.

Suppose that a harmonic force with frequency near a
resonance frequency of component R is applied to that
component. The component response will be large, and
for small damping it will be very nearly a pure mode
shape. Thus the “shape” of the resorant component re-
sponse will be only slightly affected by the location of
the applied force. Hence, near a resonant frequency of
component R(R = 1 to N), the rows and colu-i'ns of A]
that correspond to coupling links attached *o compo-
nent R will contain very large values. These columns with
large values, though, will all be nearly parallel in the
sense of vectors in n-dimensional space,

In particular, say that for some particula juency
one finds that all the component receptance terms for
component R are O (A) where A is large. Say that all the
terms of [~K.] and of .he other component receptance
matrices are O (1). Then by separating the contributio: of
the resonant mode of component R, one can write [A] as
a matrix with all O (1) terms plus a matrix with all O (A)
(and zero) terms. The columnus of the O (A) matrix, though,
will all be parallel.

Separating [A] as suggested, one can easily show
that |A| is O (A). Similarly, the determinants of the
cofactor matrices of [A] are also O (A). Since the elements



of [A-'] are ratios of cofactor determinants to |A|, it is
obvious that [A'] is O (1).

Since [A'] is O(1) and the component receptance
matrices of R are O (1), Eq. (22) gives [H®’] and [H'?] as
products of O (1) matrices with an O (A) matrix. Further,
Eq. (22) gives [H®**] as an O(A) inatrix plus a product
involving two O (A) matrices. However, since [H] is the
receptance matrix for the total coupled system, it should
be O (1) except near a res mant frequency of the total sys-
tem. Thus, in general, 7 /22) will rcsult in calculating
O(1) terms as differenc  etween O () terms for [HF’]
and [H'®]. The computational difficulty of evaluating
these O (1) terms accurat-'y is obvious.

IV. Alternative Form for Total System Receptar:ces

A method of evaluating [H] more accuraiely can best
be seen by writing Eq. (22) in a somewhat different form.
First one can write

[HY] = [@"] + [«¢'] [A"] [¢] (25)
by defining two new matrices:

7] = [C] (@] (26)
and

[«31=-T][CT (27)

Column § of [¢’] contains n elements anC gives in com-
ponent ] the incompatibilities at all the coupling points
due to a unit force at excitation point § in component J
(with all coupling forces equal to zero). Similarly, column
i of [ »¢'] gives the dispiacements at all the response points
of component I due to a force in coupling link i.

As mentioned earlier, most of the above matrices are,
in general, cunplex. One method of handling complex
matrix arithmetic is to expand each matrix into a double-
size real matrix. For example, let each of the rectangular
matrices be replaced as follows:

where the complex matrix is given by

(D) = (@) + V=1(D1,] )

and let each of the column matrices be replaced by

X! X, 30

wherce the complex form is
(X' = {Xip,) + V-1{X{,) (31)

Use of the double-size formulation for the matrices
[C’] (with only zer» imaginary parts) and the mat-
rices [~K<], as well as all the component receptance
matrices, results in no difference in form ot any of the
abuve matrix equations. The matrices [A], [A1], [+¢],
{¢’], and [H"] are now also double-size real matrices
partitioned as in Eq. (28).

Using the double-size matrix fon aalation, onz can ex-
pand Eq. (25) for the i,j term of [H"] as

2n 2n -
HY= 05+ 3 T v Add i (32)

k=1i=1

fori=1to 2nland j =1to 2n).

Alternatively, one can ‘vrite HY as a ratio of determi-
- nts of real matrices:

_g'i_i_ *Eim T -'/‘.2,21:
my= |
N — 4]
!

J
|'l’:n.1

The validity of Eq. (33} can be demonstrated by 1. .,
that expanding.the larger determinant of Fq. (33) tirst
by the upper row, then by the left-hand column, gives
gl — [A]I_ plns a double summation over k and [ of
(—1)F+t+1wyl, o4, times the determinant of —[A] with
column k and row [l omitted. Since [A] is (2n X 2n), onz
can see that | —[A]' = |A|, and (-~ 1)¥+!*! times the d-er-
minant of — [A] with column k and row [ omitied is tie
cofactor of element A of [A]. Noting that [A-'] is equal
to the transpose of the cofactor matrix of [A] “ivided by
|A] completes the verification that Eq. (33) is <quivalent
to Eq. (32).

Note that for 1=k=n, column k + 1 of the larger
determinant in Eq. (33) gives either the real or the imag-
inary part of the displacement at response point i in
component I, plus the real and imaginary parts of the
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incompatibility across each of the coupliny links, all due
to a force in coujling link k. Colunms n +21w ° ~ 1 give
a different arrangement of similar information - ‘olumn 1
gives either the real or the imaginary part of the displace-
ment at response point i in component I. plus the real and
imaginary parts of the incompatibility across each of the
coupling links. all due to a force at excitation point j in
component J.

Near a resonance frequency of component R(R=1toN).
the large O () parts oi columns 1 to n of the double-size
{A] matrix will be parallel. In addition, the O (1) parts of
columns n ~ 1 to 2n will be parallel. Similarly, for the
larger matrix in Eq. (33). the O () parts of columns 2 to
n + 1 are parallel, the O(\) parts of columns n+ 2 to
2n + 1 are parallel. and the O(A) part of column 1 1s
parallel to the O{A} parts of either2ton +1orn +2to
2n + 1, depending on whether [<=norl>n.

V. A Means of - voiding the Co.nponent
Resonance Prublem

To evaluate the determinant of a matrix with nearly
parallel columns, one can keep one column (say, column m)
unchanged and subtract a multiple of column m from each
of the other columns. To do this for the douvle-size real
matrix [A]. it is advantagecus to first choose m to corre-
spond to one of the “longest” columns of [A]. In particu-
lar, let

E.= é AnAn (34)

«=1

and let m be chosen so that

m=n (35)

and
E.=E; fork=1ton (36)

Next, let

a =0 (37)

and

1 2

ax = I 2 AnA,. fork=nandk=m (38)

Then for k< n and k £ m, ¢ times column m is the com-
ponent of column k that is parallel to c¢'imn m. One can
also show, from the partitioned form o. t  double-size
[A] maltrix, that for k>n and ks£m -+ n, a,_, times
column m + n is the component of column k ‘b
parallel to column m - ..
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Let a new matrix [B] be defined by

B = A — wly, fork=n (39

and

B =Au — ak-nAim-n fork>n (H0)
The matrix [B] will then have only two columns (m and
m + .} that are O (A). Since [B] was formed by subtract-
ing multiples of certain columns of {A] from the other
columns, one knows that

|Bl =14 (41)

Similarly, define [+ 3'] for I = 1to N by

20— T -1
T T =y,

fork=n (42)
and

fork > n (43)

i > 51
*¢ak - ".bik @k -n *'ﬂbl.m‘n

This removes the O (A) portions from all columns except
m and m + n of [-¢F].

To remove the O(A) portions from column 1 of the
larger determinant in Eq. (33) for ] = R, let

Bi= flm' 2 9l Aim (44)

Then define new matrix terms by
Fy=¥ — BAm  forj<el  (45)

1 = ¥1; — B} » Amen fori>n; (46)

=Y - BV for j=n; (47)

and
W= l— Bl s ., forj > n; (48)
Consider now the matrix
B
1o
Yo (49)
] — [B]
!
*

. * wm = 0, two columns of expression (49) are identical
. the corresponding columns of the larger determinant of



Eq. (33); namely,

* J'nn
_Am
columnm + 1= : (50)
—Azn‘m
and
';’t‘oﬂél
—A|,.Q’
columnm+n+1= . (51)
"Az-,nuu

Further, for k=n and ks m, column k + 1 of expres-
sion (49) is formed by subtracting a; times column m + 1
from column k + 1 of Eq. (33). Similarly, for k > n and
k=£m + n, column k + 1 of expression (49) is formed by
subtracting « times column m + n + 1 from column k+ 1
of Eq. (33). Finally, column 1 of expression (49) is formed
by subtracting g times column m + 1 from column 1 of
Eq. (33) for j=<n}, and by subtracting g/ times column
m+n+1forj>n;.

Thus the determinani of expression (49) is equal to the
larger determinant of Eq. (33) and one can write

Fl gl

o 1 P rhia
_ 1 & )
Hy=—1"" | (52)
TOAB|L oo —[B]
.J' [
™, |

By expanding by the upper row and the left-hand column
(as in the verification of Eq. 33), one may write Eq. (52) as

m . -
Hij= ¢+ 3 3 +¢LBiidi; (53)

k=1 l=1

Thus one can write the matrix equation
[H"] = [¢”] + [+¢'] [B*] [¢°] (54)

If [B] is partitioned into four (n X n) submatrices, one
finds that the upper-left and lower-right submatrices are
identical, and the upper-right submatrix is the same as the
lower-left, except that the sign of each term is reversed.
Thus the (2n X 2n) [B] matrix can be considered as a
double-size real version of an (n X n) complex matrix. As

)

shown in Eq. (28), the real part of the (n X n) [B] matrix
will be the upper-left submatrix and the imaginary part
will be the lower-left submatrix. The complex [B] matrix
can then be found directly from the complex [A] matrix
by use of Eq. (39).

Similarly, one can verify that the [¢"], [+¢'], and
[¢’] matrices can be considered as complex original-size
matrices, which can be found directly from the complex
[@"], [+¢'], and [¢’] matrices by use of Eqgs. (47), (42),
and (45).

Thus Eq. (54) can be considered as relating original-size
complex matrices, rather than the double-size real matrices
used in deriving it. The double-size formulation is con-
venient for analytical study, but not necessarily for
numerical calculation of the ~omplex matrix arithmetic.
Since Eq. (54) is valid as an original-size complex matrix
equation, one can use any suitable method for the numeri-
cal calculations.

Note that the a; and B8] terms are defined in the double-
size formulation. Equations (34), (38), and (44) can alter-
natively be written as summations from 1 to n, as follows:

Ei= 3 (AmyuAmyu + AnyicAg) 1) (55)

1=1

fork#m
(56)

1 »
ag = FE (A(l) 1k A(R) -+ A(I) 1k A(n l-)

Lo EF ]

and

1 »
p::E: 2 (44‘:.”,- A(g) Im +":,) 1j A(l) ln) (57)

=1

The formulation given here verifies that Eq. (52) is
equivalent to Eq. (33), but Eq. (52) can be evaluated more
accurately, since O (A) parallel columns have been re-
moved from the determinants. One can easily show that
this improved accuracy also carries over to the matrix
Eq. (54), which is equivalent to Eg. (22).

From the definitions of the new matrices, one finds that
all elements of [¢™] and [¢*] are O (1) forTandJ=1to N,
in spite of some component resonance giving C () con-
tributions to the original component receptance matrices.
Similarly, the original-size [+ '] for I = 1 to N and [B]
have all O (1) terms, except in column m where they have
O () terms. From the form of [B] one knows that |B|
is O(A) and the cofactors of the elements of [ B] are O (A),
except for elements in column m that have O (1) cofactors.
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Since [B-'] is the transpose of the cofactor matrix divided
by |B|, one finds that [B-'] has all O (1) terms except in
row m, which is O (1,A). Thus all terms in Eq. (54) are O (1)
except *¢!, terms that are O (r) and B;}, terms that are
O (1/A). Expanding the matrix multiplication of Eq. (54)
shows tliat a +¢!_ term is always multiplied by a B
term. Thus using Eq. (54) to evaluate [H"] involves addi-
tions of only O (1) terms.

V1. Summary and Couclusions

The receptance matrix of a coupled system is derived in
terms of the receptance properties of the individual com-

ponent systems and coupling links. The result is Eq. (22),
which is simple in form, but presents computational diffi-
culties near a resonant fraquency of one of the compo-
nents. The difficulties arise from the fact that near a
component resonant frequency the receptance matrices
for that component have large, nearly parallel columns.
Equations (39), (42), (45), and (47) define new matrices
that have the large parailel parts of the columns removed.
With the use of these new matrices, Eq. (54) is shown to
be equivalent to Eq. (22), but without the component reso-
nance computational difficulty. Systems with damping can
be treated by this method, since all the receptances are
considered as complex numbers.

Nomenclature

D} constrained displacement in system J
at point j

M? constrained force in system J at point §

P! steady-state excitation in system J at
point §

X! steady-state response in system J at
point j

receptance matrix between coupling
points in system J
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[@'] receptance matrix between a coupling
point and an excitation point in sys-
tem J

receptance matrix between a coupling
point and a response point in system J
receptance matrix between two ficld
points in system J

[ ] rectangular matrix

{ 7 transpose of rectangular matrix

[-@]

()

{} column matrix



